Fast generalized linear model fitting
bigLm default
fastglm(x, ...)
# Default S3 method
fastglm(
x,
y,
family = gaussian(),
weights = NULL,
offset = NULL,
start = NULL,
etastart = NULL,
mustart = NULL,
method = 0L,
tol = 1e-08,
maxit = 100L,
...
)input model matrix. Must be a matrix object
not used
numeric response vector of length nobs.
a description of the error distribution and link function to be used in the model.
For fastglm this can be a character string naming a family function, a family function or the
result of a call to a family function. For fastglmPure only the third option is supported.
(See family for details of family functions.)
an optional vector of 'prior weights' to be used in the fitting process. Should be a numeric vector.
this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be a numeric vector of length equal to the number of cases
starting values for the parameters in the linear predictor.
starting values for the linear predictor.
values for the vector of means.
an integer scalar with value 0 for the column-pivoted QR decomposition, 1 for the unpivoted QR decomposition, 2 for the LLT Cholesky, or 3 for the LDLT Cholesky
threshold tolerance for convergence. Should be a positive real number
maximum number of IRLS iterations. Should be an integer
A list with the elements
a vector of coefficients
a vector of the standard errors of the coefficient estimates
a scalar denoting the computed rank of the model matrix
a scalar denoting the degrees of freedom in the model
the vector of residuals
a numeric scalar - the root mean square for residuals
the vector of fitted values
[fastglm.fit()]
x <- matrix(rnorm(10000 * 100), ncol = 100)
y <- 1 * (0.25 * x[,1] - 0.25 * x[,3] > rnorm(10000))
system.time(gl1 <- glm.fit(x, y, family = binomial()))
#> user system elapsed
#> 0.204 0.004 0.208
system.time(gf1 <- fastglm(x, y, family = binomial()))
#> user system elapsed
#> 0.061 0.001 0.063
system.time(gf2 <- fastglm(x, y, family = binomial(), method = 1))
#> user system elapsed
#> 0.054 0.001 0.055
system.time(gf3 <- fastglm(x, y, family = binomial(), method = 2))
#> user system elapsed
#> 0.015 0.001 0.017
system.time(gf4 <- fastglm(x, y, family = binomial(), method = 3))
#> user system elapsed
#> 0.016 0.001 0.017
max(abs(coef(gl1) - gf1$coef))
#> [1] 1.165734e-15
max(abs(coef(gl1) - gf2$coef))
#> [1] 1.498801e-15
max(abs(coef(gl1) - gf3$coef))
#> [1] 1.165734e-15
max(abs(coef(gl1) - gf4$coef))
#> [1] 1.110223e-15
if (FALSE) { # \dontrun{
nrows <- 50000
ncols <- 50
bkFile <- "bigmat2.bk"
descFile <- "bigmatk2.desc"
bigmat <- filebacked.big.matrix(nrow=nrows, ncol=ncols, type="double",
backingfile=bkFile, backingpath=".",
descriptorfile=descFile,
dimnames=c(NULL,NULL))
for (i in 1:ncols) bigmat[,i] = rnorm(nrows)*i
y <- 1*(rnorm(nrows) + bigmat[,1] > 0)
system.time(gfb1 <- fastglm(bigmat, y, family = binomial(), method = 3))
} # }