log likelihood function for fitted oem objects
log likelihood function for fitted cross validation oem
objects
log likelihood function for fitted cross validation oem
objects
# S3 method for oem logLik(object, which.model = 1, ...) # S3 method for cv.oem logLik(object, which.model = 1, ...) # S3 method for xval.oem logLik(object, which.model = 1, ...)
object | fitted "oem" model object. |
---|---|
which.model | If multiple penalties are fit and returned in the same |
... | not used |
set.seed(123) n.obs <- 2000 n.vars <- 50 true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15)) x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars) y <- rnorm(n.obs, sd = 3) + x %*% true.beta fit <- oem(x = x, y = y, penalty = c("lasso", "mcp"), compute.loss = TRUE) logLik(fit)#> [1] -2837.877 -2836.417 -2833.402 -2829.310 -2825.089 -2821.048 -2817.215 #> [8] -2813.585 -2810.516 -2807.961 -2805.669 -2803.452 -2801.252 -2798.981 #> [15] -2796.811 -2794.807 -2793.121 -2791.659 -2790.394 -2789.300 -2788.361 #> [22] -2787.538 -2786.807 -2786.177 -2785.630 -2785.172 -2784.764 -2784.422 #> [29] -2784.133 -2783.894 -2783.695 -2783.530 -2783.392 -2783.279 -2783.183 #> [36] -2783.103 -2783.036 -2782.979 -2782.931 -2782.891 -2782.859 -2782.831 #> [43] -2782.809 -2782.789 -2782.773 -2782.760 -2782.748 -2782.738 -2782.730 #> [50] -2782.723 -2782.718 -2782.713 -2782.709 -2782.705 -2782.702 -2782.700 #> [57] -2782.698 -2782.696 -2782.695 -2782.694 -2782.693 -2782.692 -2782.692 #> [64] -2782.691 -2782.691 -2782.690 -2782.690 -2782.690 -2782.690 -2782.689 #> [71] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [78] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [85] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [92] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [99] -2782.689 -2782.689#> [1] -2837.877 -2835.706 -2831.482 -2825.771 -2820.093 -2814.971 -2810.260 #> [8] -2805.966 -2802.664 -2800.206 -2798.250 -2796.593 -2794.667 -2792.844 #> [15] -2791.017 -2789.464 -2788.148 -2787.061 -2786.232 -2785.546 -2784.937 #> [22] -2784.454 -2784.050 -2783.730 -2783.493 -2783.308 -2783.134 -2783.010 #> [29] -2782.923 -2782.858 -2782.809 -2782.775 -2782.753 -2782.739 -2782.731 #> [36] -2782.722 -2782.714 -2782.709 -2782.705 -2782.703 -2782.701 -2782.699 #> [43] -2782.697 -2782.696 -2782.695 -2782.694 -2782.693 -2782.692 -2782.691 #> [50] -2782.691 -2782.690 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [57] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [64] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [71] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [78] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [85] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [92] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [99] -2782.689 -2782.689fit <- cv.oem(x = x, y = y, penalty = c("lasso", "mcp"), compute.loss = TRUE, nlambda = 25) logLik(fit)#> [1] -2837.877 -2824.568 -2809.833 -2800.414 -2792.359 -2787.831 -2785.280 #> [8] -2783.921 -2783.279 -2782.972 -2782.825 -2782.755 -2782.720 -2782.703 #> [15] -2782.695 -2782.692 -2782.690 -2782.689 -2782.689 -2782.689 -2782.689 #> [22] -2782.689 -2782.689 -2782.689 -2782.689#> [1] -2837.877 -2819.409 -2801.977 -2794.011 -2787.571 -2784.622 -2783.353 #> [8] -2782.866 -2782.739 -2782.708 -2782.698 -2782.694 -2782.690 -2782.689 #> [15] -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 -2782.689 #> [22] -2782.689 -2782.689 -2782.689 -2782.689fit <- xval.oem(x = x, y = y, penalty = c("lasso", "mcp"), compute.loss = TRUE, nlambda = 25) logLik(fit)#> [1] -5078.090 -5064.995 -5050.184 -5040.747 -5032.648 -5028.086 -5025.515 #> [8] -5024.146 -5023.497 -5023.188 -5023.040 -5022.969 -5022.934 -5022.916 #> [15] -5022.909 -5022.905 -5022.903 -5022.902 -5022.902 -5022.902 -5022.902 #> [22] -5022.902 -5022.902 -5022.902 -5022.902#> [1] -5078.090 -5059.896 -5042.319 -5034.317 -5027.839 -5024.857 -5023.575 #> [8] -5023.082 -5022.953 -5022.922 -5022.912 -5022.907 -5022.903 -5022.902 #> [15] -5022.902 -5022.902 -5022.902 -5022.902 -5022.902 -5022.902 -5022.902 #> [22] -5022.902 -5022.902 -5022.902 -5022.902