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SUMMARY: Randomized controlled trials are the gold standard for estimating causal effects of treatments or interventions, but

in many cases are too costly, too difficult, or even unethical to conduct. Hence, many pressing medical questions can only be

investigated using observational studies. However, direct statistical modeling of observational data can result in biased estimates of

treatment effects due to unmeasured confounding. In certain cases, instrumental variable based techniques can be used to remove

such biases. These techniques are indeed widely studied and used in econometrics under parametric outcome models, however

limited works have focused on the utilization of instrumental variables in survival analysis, where semiparametric models are

often necessary. The additional challenge in analyzing survival data is the presence of censoring. In this paper, we introduce an

instrumental variable method that relaxes the strong assumptions of previous works and provides consistent estimation of the causal

effect of a treatment on a survival outcome. We demonstrate the efficacy of our method in various simulated settings and an analysis

of Medicare enrollment data comparing two prevalent surgical procedures for abdominal aortic aneurysm from an observational

study.
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1. Introduction

In medical research, randomized controlled trials (RCTs) are the standard for evaluating the causal

effect of a treatment or intervention on a relevant outcome. While RCTs have resulted in invaluable

medical and scientific knowledge, they are not always feasible to conduct due to cost, implementa-

tion difficulty, or ethical concerns. Furthermore, the scope of RCTs can often be narrow. As a result,

many pressing medical questions must be addressed using observational studies. However, the esti-

mation of causal effects from observational data is materially hindered by bias due to confounding.

Techniques such as propensity score matching (Rosenbaum and Rubin, 1983; D’Agostino, 1998)

can mitigate bias due to observed confounders but cannot account for unmeasured confounding,

which is often the norm rather than the exception.

Instrumental variable (IV) based methods are a common approach to handling bias due to unmea-

sured confounding. They have found widespread use and impact in economics and have recently

been increasingly utilized in medical applications. A simple example of an IV is the assignment

of a treatment in a clinical trial. The assignment of a treatment is randomized and strongly related

to the actual treatment received and hence can be viewed as an imperfect measure of the treatment

status. Furthermore it is not contaminated by unmeasured confounding. Another example of an IV

comes from the motivating application for this paper, in which we seek to compare the efficacy of

two different surgical repair procedures, open vs. endovascular, for abdominal aortic aneurysm.

Clinical trials comparing the two procedures (Prinssen et al., 2004; Lederle et al., 2012) are

underpowered and lack the long-term follow-up necessary for a thorough comparison. To overcome

these concerns, we utilize a large Medicare enrollment dataset with long-term follow-up. Hospital-

level preferences for one type of surgery over another, measured by the proportion of endovascular

repairs over the year prior to surgery, are highly predictive of the actual procedure received and thus

we seek to use it in this work as an IV. This proportion has also been used as an IV in O’Malley

et al. (2011).
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It is well-known that IV estimators cannot identify causal effects without additional assumptions

(Pearl, 1995). Therefore most existing methods make two types of modeling assumptions (Rubin,

2008): those on the scientific or outcome model and those on the IV model. In the classical IV

methods, linear regression models are assumed for the (continuous) outcome whereas the IV

assumptions, known as independence and monotonicity conditions, are very general. In particular,

noncompliance in the clinical trial setting has been frequently dealt with under both these two

types of conditions (Angrist, Imbens, and Rubin, 1996; Clarke and Windmeijer, 2012; Robins

and Tsiatis, 1991). Moving beyond linear outcome models, recent work has extended IV methods

to nonlinear parametric outcome models (Terza, Basu, and Rathouz, 2008). However, a fairly

restrictive assumption was imposed on the IV model. In particular, the relationship between IV

and treatment was assumed to be deterministic to facilitate a class of two-stage estimators. Tan

(2006) and Clarke and Windmeijer (2012) considered less restrictive IV assumptions to deal with

nonlinear and semiparametric outcome models.

When the outcome of interest is a duration measure such as mortality, the development of IV

methods has been hindered by substantial challenges. Besides the need to deal with censoring,

the hazard function, as a common modeling objective of many survival models, has significant

limitation for causal interpretation (Hernan, 2010). Work to incorporate IVs in time-to-event anal-

ysis has relied on restrictive assumptions either on the outcome model or on the IV model. The

majority of such methods impose strong outcome modeling assumptions by using parametric

structural equation models (Tang and Lee, 1998; Muthen and Masyn, 2005; Chen, Hsiao, and

Wang, 2011). Recent work has moved away from parametric survival models (MacKenzie et al.,

2014; Tchetgen Tchetgen et al., 2015; Lin et al., 2014; Li et al., 2015). However, parametric

assumptions on the IV models were still required. Robins and Tsiatis (1991) considered rank

preserving structural failure time models in the clinical trial setting with noncompliance, assuming

censoring time is always observed. The work of Martinussen et al. (2017) allows for flexible
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semiparametric estimation with no distributional assumptions on the exposure and can incorporate

covariate adjustment as long as the model for the conditional mean of the IV given covariates is

correctly specified.

The focus of this paper is to develop an IV method which imposes only the core IV conditions,

i.e. the independence conditions, while retaining the flexibility of semiparametric models for the

time-to-event outcome. Similar to Martinussen et al. (2017), our approach can handle certain

forms of dependent censoring, however we only require consistent estimation of the censoring

distribution. In particular, we consider the semiparametric accelerated failure time (AFT) model

which postulates a direct linear relationship between the log transformed failure time and covariates

(Tsiatis, 1990; Ying, 1993). The remainder of the paper is organized as follows. In Section 2, we

introduce the rank-based estimation framework for the semiparametric AFT model. Section 3 intro-

duces a rank-based estimation framework of the semiparametric AFT model which incorporates

IV estimation and derive the theoretical properties of the resulting estimator. Simulation studies

are given in Section 4 to evaluate finite sample properties of our method. Finally, in Section 5 we

compare the two surgical repair procedures for AAA using the Medicare enrollment data.

2. Preliminaries

Let T †i be a log-transformed duration outcome. The semiparametric AFT model postulates a direct

relationship between failure time and covariates,

T †i = β0Xi + ei, i = 1, . . . , n, (1)

where Xi is a covariate of interest and the ei’s are independent and identically distributed with an

unknown distribution F0, which does not depend on Xi. Here Xi is one-dimensional for the sake

of simplicity; extensions to d-dimensional settings are straightforward. Now suppose T †i is subject

to censoring by Ci. We observe Ti ≡ T †i ∧ Ci and the failure indicator ∆i ≡ I{T †i 6 Ci}. The

censoring variable Ci is commonly assumed to be independent of ei conditioning on Xi.
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A popular estimation method for the semiparametric AFT model is the rank-based method

introduced by Tsiatis (1990). Let εβi = Ti − βXi be the observed residual for subject i, Ni(t, β) =

I(εβi 6 t,∆i = 1) the residual counting process and Yi(t, β) = I(εβi > t) the residual at-risk

process. Tsiatis (1990) introduced the following rank based estimating function for β0,

Sn(β) =
1

n

n∑
i=1

∫
ρn(t, β) {Xi − ηX(t, β)} dNi(t, β) (2)

where ρn(t, β) is a weight function and ηX(t, β) ≡ D
(1)
n (t, β)

/
D

(0)
n (t, β) with

D(0)
n (t, β) =

1

n

n∑
j=1

Yj(t, β) and D(1)
n (t, β) =

1

n

n∑
j=1

XjYj(t, β). (3)

Hence ηX(t, β) estimates the mean covariate value for patients in the residual risk set at time t. We

have included β in our notations to emphasize dependence on β. In particular, the dependence

of Ni(t, β) and Yi(t, β) on β makes the estimating function Sn(β) non-smooth, which poses

computational challenges (Lin and Geyer, 1992; Tian et al., 2004; Yu and Nan, 2006).

Tsiatis (1990) showed that Sn(β) is asymptotically linear in a
√
n-neighborhood of the true

value β0 under some regularity assumptions. Ying (1993) relaxed the assumptions and proved a

stronger version of the same result. As Sn(β) is not continuous, the estimator of β0 is defined as

a zero-crossing of Sn(β). The asymptotic normality of a zero-crossing of Sn(β) was also proved.

By taking ρn(t, β) = ωn(t, β)D
(0)
n (t, β), we can write

Sn(β) =
1

n

n∑
i=1

∫
ωn(t, β)

{
D(0)
n (t, β)Xi −D(1)

n (t, β)
}
dNi(t, β).

When ωn(t, β) ≡ 1, Sn(β) is the Gehan weighted estimating equation. We aim to extend this

modeling and estimation framework to allow for IV estimation in the presence of unmeasured

confounding.
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3. Estimation with instrumental variables

3.1 Instrumental Variable Assumptions and Potential Estimators

In the presence of possible unmeasured confounding, we assume that the true model is

T †i = β0Xi + Ui, i = 1, . . . , n, (4)

The term U here is general and can represent an error term which is partly comprised of confound-

ing factors. In contrast to (1), X and U can be correlated. When X is univariate and represents

treatment, then the correlation can be due to ‘differential selection’ into the treatment. In the more

general case of multivariate X , we assume that one component of X represents a treatment, and

the effects of the other components of X on T †i are also of interest to us.

Obviously, the rank-based method for the usual AFT model does not work any more due to

this correlation. Now assume that there is an IV Z that satisfies the following well-known core

conditions (Clarke and Windmeijer, 2012; Didelez and Sheehan, 2007):

(1) Independence: Z ⊥⊥ U

(2) Exclusion Restriction: T † ⊥⊥ Z | X,U

(3) Relatedness: X 6⊥⊥ Z, for all components of X

The relationship among the variables can also be depicted in Figure 1. These three assumptions

are critical for consistent estimation with IVs. The first of these assumptions assures that the

instrument is uncontaminated by unmeasured confounding. The second assumption requires that

the instrument does not affect the survival time except through its effect on X . If this is violated,

then there is no way to determine how a change in the instrument affects the outcome through its

change on the treatment. Clearly it is necessary for there to be a relationship between the instrument

and the treatment for any hope of consistent IV estimation.

[Figure 1 about here.]

Instead of the observable quantity based formulation, counterfactuals can be used to provide an
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equivalent description of our model. Such equivalent description has appeared in recent literature.

In particular, Wang and Tchetgen Tchetgen (2016) gave such a counterfactual formulation in

their Section 2 for causal inference with IVs. Specifically, for the case when X is univariate and

represents a dichotomous treatment, let T †(x, z) be the counterfactual log-transformed survival

time corresponding to treatment level X = x and IV level Z = z. Then the independence

assumption becomes Z ⊥⊥ (X(z), T †(x, z)) and the exclusion restriction assumption becomes

T †(x, z) = T †(x) for any z. The underlying structural model takes a similar form as Equation (4).

However the underlying effect of the unmeasured confounder U on T †(x) needs to be the same

for different treatment levels. Otherwise only a local average treatment effect (LATE) is identifi-

able without further assumptions (Wang and Tchetgen Tchetgen, 2016; Tan, 2006). Whereas the

counterfactual framework makes the underlying assumptions more transparent, we will use our

observable quantity based formulation for the remainder of the article to make it accessible to a

wider audience.

An IV can be viewed as an experimental handle. When the IV is changed, the treatment status

may be changed, and only through this change the outcome is impacted. This viewpoint is a key

motivation of our proposed estimator and provides insight into its consistency. Another view of IVs

is that the instrument is an imperfect measurement of the treatment status, but unlike the treatment

status, it is not affected by unmeasured confounding. This view of IVs leads to an imputation-based

estimator such as a two-stage least squares type estimator.

One possible IV estimator under the AFT model is a two-stage least squares approach. Such an

approach would first posit a linear relationship between X and Z as X = γZ+ν, where E(ν) = 0

and var(ν) < ∞. Using this model, imputed values X̂ of the treatment X would be computed as

X̂ = Z(Z ′Z)−1Z ′X and would replace X everywhere in (2). This may rely on the validity of the

posited relationship between X and Z and hence if this relationship does not hold, the resulting

estimator is potentially inconsistent. This assertion is demonstrated in our simulation studies.
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Let εβi = Ti − βXi be the observed residual for subject i, Ni(t, β) = I(εβi 6 t,∆i = 1) the

residual counting process and Yi(t, β) = I(εβi > t) the residual at-risk process. Here, ∆ is as

defined in Section 2. In light of the view of IVs as experimental handles, the development of an

estimator for β0 should capture how changes in Z affect X and how this change affects T †. To

estimate β0, it would then seem intuitive to use

Ψ̃n(β) =
1

n

n∑
i=1

∫
ρn(t, β) {Zi − ηZ(t, β)} dNi(t, β) (5)

where ρn(t, β) is a weight function and ηZ(t, β) ≡ D̃
(1)
n (t, β)

/
D

(0)
n (t, β) with

D̃(1)
n (t, β) =

1

n

n∑
j=1

ZjYj(t, β) =
1

n

n∑
j=1

ZjI(εβj > t) =
1

n

n∑
j=1

ZjI(Tj − βXj > t).

and D(0)
n (t, β) defined in (3).

Hence ηZ(t, β) estimates the mean covariate value of the IVZ for patients in the residual (defined

using X) risk set at time t. In other words, the time scale of (5) is constructed using X , but

the covariate comparison is done using Z. However, even under the strong assumption that C

is independent of (Z,X, T †), this formulation induces non-ignorability of the censoring random

variable Ci on the residual time scale and hence is not consistent for β0. To remedy this issue, we

next consider unbiased estimation of β0 in (4) using the IV.

Note that the estimating equation of Robins and Tsiatis (1991), with extensions thereof proposed

by Bijwaard (2009), is closely related to (5). Considering covariates without time-dependence and a

dichotomousX , Robins and Tsiatis (1991) replace Yi(t, β) andNi(t, β) with Y ∗i (t, β) = I(vβi > t)

and N∗i (t, β) = I(εβi 6 t,∆∗i = 1), respectively, where vβi = min(Ti exp (βXi), C
∗
i ), the artificial

censoring variable C∗i = CiI(β > 0)+Ci exp (β)I(β < 0), and ∆∗i = I(Ti exp (βXi) < C∗i ). The

population parameter of interest β̃0 under the model of Robins and Tsiatis (1991) represents−β0 of

(1). The induced non-ignorability of censoring is handled via the artificial censoring variable C∗i ,

which is no longer non-ignorable. Note that this approach requires Ci observed for all subjects.
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3.2 Proposed Estimator

To mitigate the induced non-ignorability of censoring, we propose an estimator β̂n of β0 as the

zero crossing of the following estimating equation

Ψn(β) =
1

n

n∑
i=1

∫
ρn(t, β)

{
Zi − η̂Ĝ,n(t, β)

} dNi(t, β)

Ĝ(t+ βXi|Xi, Zi)
(6)

where ρn(t, β) is a weight function, Ĝ is any uniformly consistent estimator of the survival function

G0 for the censoring random variable C, which may depend on the covariate X and instrument Z

but not U , and

η̂Ĝ,n(t, β) ≡
D

(1)

Ĝ,n
(t, β)

D
(0)

Ĝ,n
(t, β)

(7)

with

D
(1)

Ĝ,n
(t, β) =

1

n

n∑
j=1

ZjYj(t, β)

Ĝ(t+ βXj|Xj, Zj)
and D

(0)

Ĝ,n
(t, β) =

1

n

n∑
j=1

Yj(t, β)

Ĝ(t+ βXj|Xj, Zj)
. (8)

Our proposed estimating equation is based on quantities weighted according to the inverse proba-

bility of censoring, which accounts for noninformative censoring by creating a pseudopopulation

that would have been observed had there been no censoring. Here we explicitly put Ĝ in the

notation as it is generally unknown and needs to be estimated. We assume that C ⊥⊥ T †|(X,Z). A

common model for G when censoring depends on covariates is Cox’s proportional hazards model,

λ(c|X,Z) = λ0(c) exp(XαX+ZαZ), under which Ĝ(t|X,Z) = [exp(−
∫ t
0
λ̂0(u)d u)]exp(Xα̂X+Zα̂Z).

If C is independent of (Z,X, T †), then we can take Ĝ as the estimated survival function of C

based on the Kaplan-Meier estimator. Although we define our estimator as the zero crossing of (6),

an approximate root β̂n satisfying Ψn(β̂n) = op∗(n
−1/2) satisfies the conditions required for our

asymptotic derivations in Section 3.3.

Dividing by zero will never occur in (8) or in (6). The denominator, Ĝ(t+βXj|Xj, Zj), can only

be zero if t+βXj > τ ∗, where τ ∗ represents the longest follow-up time. However, if t+βXj > τ ∗,

then the term in the numerator Yj(t) = I(Tj > t+ βXj) = 0. Then the terms in (8) can be defined
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as 0 without issue. Similarly, dividing by zero does not occur in (6) as t+βXi by definition cannot

be greater than τ ∗.

Before we study asymptotic properties of the solution β̂n of Ψn(β) = 0, we justify the unbi-

asedness of the population level version of (6) for 0 when β is set to β0. Thus this should imply

Fisher consistency of β̂n for estimating β0 under some regularity conditions such as uniqueness of

the solution.

The term D
(1)

Ĝ,n
(t, β0) is an estimator of its population level counterpart

d
(1)
G0

(t, β0) = E
{
ZI(U > t)I(C > t+ β0X)G0(t+ β0X|X,Z)−1

}
where U = T † − β0X

= E
{
ZI(U > t)G0(t+ β0X|X,Z)−1E(I(C − β0X > t) | X,Z, U)

}
= E

{
ZI(U > t)G0(t+ β0X|X,Z)−1G0(t+ β0X|X,Z)

}
= E

{
ZI(U > t)

}
= E(Z)P (U > t) (9)

Similarly, D(0)

Ĝ,n
(t, β0) is an estimator of its population level counterpart

d
(0)
G0

(t, β0) = E
{
I(U > t)I(C > t+ β0X)G0(t+ β0X|X,Z)−1

}
= P (U > t) (10)

ThereforeD(1)

Ĝ,n
(t, β0)/D

(0)

Ĝ,n
(t, β0) converges toE(Z) for any t. Assuming that ρn(t, β0) converges

to a function of t, say ρ0(t), we then show that Ψn(β0) basically acts as an estimator of 0.

Ψn(β0) → E

[
ρ0(U)

{
Z −

d
(1)
G0

(U)

d
(0)
G0

(U)

}
∆G0(T

†|X,Z)−1

]
= E

[
E
(
ρ0(U) {Z − E(Z)}G0(T

†|X,Z)−1∆
∣∣T †, X, Z, U)]

= E
[
ρ0(U) {Z − E(Z)}G0(T

†|X,Z)−1E
(
I(C > T †)

∣∣T †, X, Z, U)]
= E

[
ρ0(U) {Z − E(Z)}G0(T

†|X,Z)−1G0(T
†|X,Z)

]
= E [ρ0(U){Z − E(Z)}]

= 0,

where the third equality holds by assumption (C.5) below and the last equality holds due to the

independence of U and Z.
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3.3 Asymptotic properties

We utilize the notation of van der Vaart and Wellner (1996); Kosorok (2008) for empirical pro-

cesses. For a given function f of a random variable X , we denote Pf =
∫
f(x) dP (x),Pnf =

n−1
∑n

i=1 f(Xi), and Gn =
√
n(Pn − P )f. Additionally, for a sequence of random variables

{Xn} and a sequence of constants an, n = 1, 2, . . . , we say Xn = op∗(an) if Xn/an converges to

0 in outer probability P ∗ corresponding to P (van der Vaart and Wellner, 1996; Kosorok, 2008).

Similarly, we say Xn = Op∗(an) if Xn/an is stochastically bounded in outer probability, i.e. for

any ε > 0, there exists M > 0 such that P ∗(|Xn/an| > M) < ε, ∀n.

In this notation, for any G, we can writeD(1)
G,n(t, β) = Pn{ZI(T −βX > t)G−1(t+βX|X,Z)}

and D
(0)
G,n(t, β) = Pn{I(T − βX > t)G−1(t + βX|X,Z)}. Their corresponding limits are

d
(1)
G (t, β) ≡ P{ZI(T −βX > t)G−1(t+βX|X,Z)} and d(0)G (t, β) ≡ P{I(T −βX > t)G−1(t+

βX|X,Z)}. Then η0(t, β) ≡ d
(1)
G0

(t, β)/d
(0)
G0

(t, β) is the limit of η̂Ĝ,n(t, β). Let τ ∗ represent the

longest follow-up time and τ∗ the initial time of the study. The supernorm || · || is therefore defined

over the interval [τ∗, τ
∗]. We assume the following conditions for Theorem 1:

(C.1) B, the parameter space of β, is compact;

(C.2) β0 ∈ B is the unique solution of Ψ0(β) = 0 where Ψ0(β) is the limit of Ψn(β);

(C.3) G0(t|X,Z) and Ĝ(t|X,Z) are bounded away from zero when τ∗ 6 t 6 τ ∗;

(C.4) X has bounded support;

(C.5) C ⊥⊥ T †|(X,Z).

THEOREM 1: Assume conditions (C.1)-(C.5) are true, that both ρn(t, β) in Ψn(β) defined in (6)

and Ĝ(t) belong to Glivenko-Cantelli classes, and that ‖Ĝ−G0‖ = op∗(1). Then an approximate

root β̂n satisfying Ψn(β̂n) = op∗(1) is consistent. In particular when ρ̂Ĝ,n(t, β) = D
(0)

Ĝ,n
(t, β) for

the Gehan type of weight, the resulting estimator is consistent.

EXAMPLE 1: AssumeC follows the Cox’s proportional hazards model λ(c|X,Z) = λ0(c) exp(XαX+
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ZαZ). Then take Ĝ(t|X,Z) = [exp(−
∫ t
0
λ̂0(u)d u)]exp(Xα̂X+Zα̂Z). From (Kosorok, 2008, pages

54-59), {Ĝ(t|X,Z)} admits a Donsker class (and thus Glivenko-Cantelli class) and hence the

conditions for Theorem 1 hold.

EXAMPLE 2: Make the further assumption that C is independent of (Z,X, T †) and let Ĝ be

the Kaplan-Meier estimator of G0. From (Kosorok, 2008, pages 24-28), {Ĝ(t|X,Z)} = {Ĝ(t)}

admits a Donsker class and hence the conditions for Theorem 1 hold.

Now we consider the asymptotic distribution of β̂n. We chose to work with γ(·) ≡ G(·|X,Z)−1

instead of G(·) for asymptotic investigation due to both the simplicity of notation and theoretical

development. For clarity of presentation, in the following theorem, for generic η, ρ,G, we define

Ψ(β, η, ρ, γ) ≡ P [γ(T )ρ(εβ, β){Z − η(εβ, β)}∆].

The corresponding empirical version is Ψn(β, η, ρ, γ) = Pn[γ(T )ρ(εβ, β){Z − η(εβ, β)}∆].

For simplicity of presentation, we focus on ρ̂Ĝ,n(t, β) = D
(0)

Ĝ,n
(t, β) which converges to ρ0(t, β) ≡

P (T − βX > t). Note that η0(t, β) = P (Z | T − βX > t). Denote γ0 = G−10 where G0 is the

survival function for C. We introduce the following conditions for Theorem 2:

(C.6) Ψ(β, η0(·, β), ρ0(·, β), γ0(·)) is differentiable with respect to β ∈ B0 where B0 ⊂ B is a

neighborhood of β0;

(C.7) The derivative Ψ̇β(β) ≡ Ψ̇β(β, η0(·, β), ρ0(·, β), γ0(·)) is bounded and continuous. Further-

more, its evaluation at β0, Ψ̇β(β0) ≡ Ψ̇β(β0, η0(·, β0), ρ0(·, β0), γ0(·)), is nonsingular.

Let T , Z , and X denote the sample spaces of the random variables T , Z, and X respectively. Then

condition (C.6) is also implied by the following condition:

(C.6*) ρ0(εβ, β) and η0(εβ, β) are differentiable in β with continuous derivatives ρ̇0β and η̇0β

respectively, which are uniformly bounded and continuous in B0 × T × Z × X .

Condition (C.6*) implies that Ψ(β, η0(·, β), ρ0(·, β), γ0(·)) is differentiable in β with bounded

continuous derivative Ψ̇β(β, η0(·, β), ρ0(·, β), γ0(·)) in B0.
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We must further define the derivative map of Ψ(β0, η0, ρ0, γ) with respect to the function γ(·)

as it is estimated by γ̂n = 1/Ĝ. For this, we use the more general differentiability concept for

normed spaces (van der Vaart, 1998, Chapter 20). In particular, in the Supplementary Material, we

prove that Ψ(β, η0(·, β), ρ0(·, β), γ(·)) is Hadamard-differentiable with respect to γ(·). Both η0 and

ρ0 are also functions of γ, however for simplicity this is not indicated in the notation. Denote the

corresponding derivative map as

Ψ̇γ(γ) ≡ Ψ̇γ(β0, η0(·, β0), ρ0(·, β0), γ(·)).

Furthermore, let β̃n be an approximate root satisfying

Ψn(β̃n, η̂G0,n(·, β̃G0,n), ρ̂G0,n(·, β̃n), γ0(·)) = op∗(n
−1/2).

Thus, β̃n is our proposed estimator when the true censoring distribution is known.

THEOREM 2: Let β̂n be an approximate root satisfying

Ψn(β̂n, η̂Ĝ,n(·, β̂Ĝ,n), ρ̂Ĝ,n(·, β̂n), γ̂n(·)) = op∗(n
−1/2).

Then under the conditions (C.1)-(C.7), and the assumptions of Theorem 1 but with {Ĝ(t)} belong-

ing to Donsker classes, and that
√
n‖Ĝ − G0‖ converges to a tight, mean zero Gaussian process,

we have
√
n(β̂n − β0) is asymptotically normal with the asymptotic representation

√
n(β̂n − β0) =

√
n(β̃n − β0)− {Ψ̇β(β0)}−1Ψ̇γ(

√
n(γ̂n − γ0)) + op∗(1)

Both Theorems 1 and 2 are proven in the Supplementary Material. The asymptotic representation

of
√
n(β̃n − β0) is derived in Lemma 2 of the Supplementary Material. Note that both Examples 1

and 2 are covered under Theorem 2. For variance estimation, we use a modification of the compu-

tationally efficient approach of Zeng and Lin (2008), outlined in the Supplementary Material.

4. Simulations

We investigate the performance of our method under a variety of simulation settings intended to

replicate the presence of unmeasured confounding in observational studies. The aim of the simula-
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tions is to evaluate finite sample estimation properties under varying degrees of unmeasured con-

founding and strengths of the IV. We first generate independent standard normal random variables

εT † , εX , εC , U , and Z. Then we generate log-normal survival times T † = exp {β0X + βUU + εT †}.

The covariate is generated asX = αZ exp {Z}+αUU+εX . The censoring times are log-normally-

distributed and either independent of covariates C = exp {α + εC} or dependent on covariates

C = exp {0.25X − 0.25Z + εC}. Here α is chosen to be the mean of log T † to keep the censoring

times on a similar scale as the survival times. The simulation parameters βU and αU were varied

from 0.25 to 0.75 and αZ was varied from 0.25 to 1. The true effect of interest, β0 was set to 1.

When the censoring distribution is independent, the Kaplan-Meier estimator is used to estimate

Ĝ and when the censoring distribution is dependent, a Cox proportional hazard model was used

for Ĝ. The variable U in this simulation acts as unmeasured confounding. The strengths of the

effect of the unmeasured confounding on the survival time T † and the treatment X are specified

by βU and αU respectively. The strength of the IV is characterized by αZ . The effect of the IV

Z on X is nonlinear to demonstrate that our estimator does not require correct specification of

the structural relationship between Z and X . The censoring rate under the independent censoring

simulation settings is approximately 0.48. The censoring rate under the dependent censoring rate is

approximately 0.62, which is similar to the censoring rate in the motivating Medicare enrollment

dataset.

We evaluate our proposed estimator as well as other estimators. All estimators are based on

rank-based estimation utilizing Gehan-type weights. To evaluate the impact of the unmeasured

confounding we use as a baseline the standard rank-based estimator for the semiparametric AFT

model in Eq. (2). In addition, we evaluate the impact of the induced dependence of the censoring

random variable on the residual scale by using the estimator in Eq. (5). To assess the impact of

incorrectly specified models in a structural equation modeling based approach, we evaluate a two-

stage estimator. In the two stage estimator, X is regressed on Z in a linear model with no nonlinear
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terms of Z. Predictions X̂ of X using this incorrect model are then generated and X is replaced

with X̂ in the standard rank-based estimator given in Eq. (2) and the solution of this equation gives

a structural equation modeling type estimator for β0. The two-stage estimator is left unspecified

to demonstrate its reliance on the truth of the posited structural equation. Finally, we evaluate

the performance of our proposed estimator in Eq. (6). For this method we use the Kaplan-Meier

estimator of the censoring distribution when the censoring random variable is independent and we

use Cox’s proportional hazards model when it is dependent. The results for estimation bias are

in Figures 2 and 3 and coverage results are displayed in Figures 4 and 5. Results under Cox’s

proportional hazards model are presented in the Supplementary Material. Simulation results for

scenarios with depending censoring are similar to those with independent censoring and are thus

presented in the Supplementary Material. The method denoted “AFT” is the standard semiparamet-

ric AFT model with no adjustment for unmeasured confounding, the method denoted “AFT-2SLS”

is the semiparametric AFT method with X replaced with X̂ from a first stage linear regression

model, “AFT-IV” is the semiparametric AFT model with IV adjustment of Eq. (5) that does not

account for induced censoring dependence, and finally “AFT-IV-IPCW” is our proposed estimator.

All approaches use the Gehan weighting function. The proposed estimator has consistently less

empirical bias than other estimators under all settings. All estimators tend to have more bias for

larger values of βU and αU . The proposed estimator has reduced bias and variance for the larger

sample size. The AFT and AFT-2SLS estimators have differing biases as αZ is changed, however

this is an artifact of how the data were simulated. Unsurprisingly, the empirical coverage of all

methods other than the proposed method is significantly below the nominal level. The empirical

coverage of the proposed method is approximately at the nominal level in most scenarios, however

in some settings (in particular when αU = 0.75) its empirical coverage is slightly above the nominal

level. Further simulations investigating the robustness of AFT-IV-IPCW to censoring distribution
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misspecification and results regarding the root mean squared error of estimates are presented in the

Supplementary Material.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

5. Analysis of Medicare enrollment data

Abdominal aortic aneurysm (AAA) is a life-threatening condition characterized by a pronounced

enlargement of the abdominal aorta, increasing the risk for aortal rupture. Aortal rupture is as-

sociated with a severely high rate of mortality, resulting in death in approximately 90% of cases

(Assar and Zarins, 2009). One treatment option to mitigate the risk of rupture is open surgical

repair, however it is associated with higher risk of complication. Endovascular repair (EVAR) is a

less invasive repair procedure and is associated with lower short-term mortality. EVAR has found

widespread use and now accounts for a large portion of elective repairs, yet there are concerns that

EVAR is less effective in the long-term, leading to more frequent reinterventions. On the other

hand, evidence from RCTs comparing EVAR with open repair suggest that while there may be a

short term mortality reduction for EVAR (Prinssen et al., 2004), there may be little difference in

the long-term (Lederle et al., 2012). However these trials are underpowered, one having only 10

AAA-related deaths, and lack long-term follow-up. With the excessive costs involved in conducting

RCTs, it is unlikely that it will be possible to conduct a trial large enough and for long enough to

definitively answer questions over the comparative advantage or not of EVAR versus open surgical

repair over long-term follow-up. However, the concern that the mortality benefits of EVAR may

not be durable in the long-term is an important population health concern.

As sufficient data from RCTs are not available, comparisons between the two repair procedures
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must be carried out using observational data. One such dataset is taken from Medicare enrollment.

The current analysis of this data (Schermerhorn et al., 2008; Edwards et al., 2014) hinges on

propensity score matching and thus does not control for bias due to unmeasured confounding. Thus

an analysis which accounts for unmeasured confounding could result in a better understanding of

AAA repair and specifically whether the recommended surgical procedure varies with the length

of follow-up being considered. Such comparative effectiveness predicaments occur in a plethora

of domains and in each case clinical researchers, physicians, and surgeons are anxious to learn the

best approach.

To illustrate our method, we apply it to analyze a data set of Medicare beneficiaries who received

surgical AAA repair. The surgeries were performed from 2001-2008 and patients were followed

up until 2009. Patients aged 65 and older were included and those enrolled in Health Maintenance

Organizations were excluded from the study. The primary outcome is all-cause survival. The IV

used is the proportion of AAA repairs that were EVAR for each hospital over the previous year.

There is no conclusive method to demonstrate that the IV independence assumption holds using

observable data; we can only justify its use using external arguments. A crucial point is that we

include total AAA volume per hospital as a predictor, hence the IV only fails if institutional AAA

experience is procedure specific in the sense that the proportion of past EVAR cases is either

correlated with an unmeasured confounder or is directly related to the survival time to death. In our

analysis we adjust for demographic as well as medical information. Medical information includes

instances of previous AAA, myocardial infarction over the past 6 months, valvular heart disease,

congestive heart failure, hypertension, and diabetes mellitus among others. By adjusting for these

observed predictors in our survival time and EVAR selection models, we hope to block remaining

sources of unmeasured confounding. We focus on the subset of patients who experienced a ruptured

AAA. Patients with ruptured AAA experience high mortality and thus it is of interest to understand

the effects of the two surgical repair procedures in such cases. The data consists of 2853 patients
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with ruptured AAA with a censoring rate of approximately 66%. Approximately 77% of surgeries

were EVAR. The median follow-up time is approximately 1598 days and the longest follow-up

time is 3283 days. The median failure and censoring times are 1253 and 1759 days, respectively.

Without adjusting for unmeasured confounding, analysis using the semiparametric AFT model

suggests that there is little difference in long-term survival between those who received EVAR

and those who received open repair. However analysis using our method results in a considerably

different estimate of the effect of EVAR. While the difference in survival time between the two

procedures is not significant, the sign of the effect of EVAR changed from that under the standard

AFT model to suggest slightly higher risk under EVAR (see Table 1 for the estimates of the effect

of EVAR on log T † under the various approaches).

[Table 1 about here.]

An obvious counter to the utility of the new AFT-IV-IPCW method is that the same conclusion is

reached under all analyses and its estimate is indistinguishable from that of the other IV procedures.

However, the lack of significance of the IV procedures is in-part due to the wider confidence

intervals accompanying them suggesting that these effects may have been significant if the data

set had been larger, and the similarity among the IV estimates reflects a tendency for estimates

of different procedures to converge the closer the true effect is to 0 or in situations when the true

amount of unmeasured confounding is relatively small.

An issue raised by the empirical analysis is whether the treatment effect of EVAR over open

surgical repair is homogeneous. An extension of the current methodology is to allow for treatment

effect heterogeneity over follow-up time, initially based on a specified change-point and ultimately

allowing for unspecified change-points. This remains an exciting avenue of further work.
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6. Discussion

The focus of this paper is to develop an estimator which incorporates IVs in the semiparamet-

ric AFT model to mitigate bias from unmeasured confounding for studies with time-to-event

outcomes. The resulting estimator relies only on the core IV conditions and provides consistent

estimation of the effect of a treatment or intervention in the presence of unmeasured confounding.

Furthermore, the asymptotic properties of the estimator are established. The proposed estimator

requires estimation of the distribution of the censoring random variable, which seems necessary as

the core IV conditions are known to be insufficient to identify the causal parameters under general

outcome models. However, the proposed method is robust to misspecification of the censoring

distribution in particular when a strong IV is used. Considering more flexible models than (4), our

approach can be extended to a more general class of rank preserving structural failure time models

(Robins and Tsiatis, 1991) as outlined in Section 2 of the Supplementary Material. A complication

of our estimator is the non-monotonicity of the estimating equation even when using Gehan-

weights. It would be worthwhile to develop a consistent estimator based on monotone estimating

equations in order to ease the computational burden and potentially improve efficiency.

7. SUPPLEMENTARY MATERIALS

Web Appendices and Figures referenced in Sections 3, 4, and 6 in addition to an R implementation

of the proposed methodology are available with this paper at the Biometrics website on Wiley

Online Library.
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Z X T †

U

Figure 1. Diagram of core IV assumptions. A line with no arrow indicates dependence and a line
with an arrow indicates a causal relationship in a specific direction.



24 Biometrics, December xxxx

Figure 2. Simulation bias results holding αU = 0.75 and varying βU , αZ , and the sample
size. The censoring distribution is independent of covariates. This figure appears in color in the
electronic version of this article.
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Figure 3. Simulation bias results holding βU = 0.75 and varying αU , αZ , and the sample
size. The censoring distribution is independent of covariates. This figure appears in color in the
electronic version of this article.
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Figure 4. Empirical coverage for 95% confidence intervals holding αU = 0.75 and varying
βU , αZ , and the sample size. The censoring distribution is independent of covariates. This figure
appears in color in the electronic version of this article.
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Figure 5. Empirical coverage for 95% confidence intervals holding βU = 0.75 and varying
αU , αZ , and the sample size. The censoring distribution is independent of covariates. This figure
appears in color in the electronic version of this article.
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Table 1
Estimates and corresponding confidence intervals of the effect of endovascular vs. open repair for rupture cases based on the

different estimators.

Estimator β̂ (95% Conf. Interval)

AFT 0.047 -0.063 0.144
AFT-IV -0.169 -0.420 0.080
AFT-2SLS -0.175 -0.432 0.074
AFT-IV-IPCW -0.156 -0.364 0.052


