The vennLasso
package provides methods for hierarchical variable selection for models with covariate effects stratified by multiple binary factors.
The vennLasso
package can be installed from CRAN using:
install.packages("vennLasso")
The development version can be installed using the devtools package:
devtools::install_github("jaredhuling/vennLasso")
or by cloning and building.
Load the vennLasso package:
library(vennLasso)
Access help file for the main fitting function vennLasso()
by running:
?vennLasso
Help file for cross validation function cv.vennLasso()
can be accessed by running:
?cv.vennLasso
Simulate heterogeneous data:
set.seed(100) dat.sim <- genHierSparseData(ncats = 3, # number of stratifying factors nvars = 25, # number of variables nobs = 150, # number of observations per strata nobs.test = 10000, hier.sparsity.param = 0.5, prop.zero.vars = 0.75, # proportion of variables # zero for all strata snr = 0.5, # signal-to-noise ratio family = "gaussian") # design matrices x <- dat.sim$x x.test <- dat.sim$x.test # response vectors y <- dat.sim$y y.test <- dat.sim$y.test # binary stratifying factors grp <- dat.sim$group.ind grp.test <- dat.sim$group.ind.test
Inspect the populations for each strata:
plotVenn(grp)
Fit vennLasso model with tuning parameter selected with 5-fold cross validation:
fit.adapt <- cv.vennLasso(x, y, grp, adaptive.lasso = TRUE, nlambda = 50, family = "gaussian", standardize = FALSE, intercept = TRUE, nfolds = 5)
Plot selected variables for each strata (not run):
library(igraph)
##
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
## decompose, spectrum
## The following object is masked from 'package:base':
##
## union
plotSelections(fit.adapt)
Predict response for test data:
preds.vl <- predict(fit.adapt, x.test, grp.test, s = "lambda.min", type = 'response')
Evaluate mean squared error:
mean((y.test - preds.vl) ^ 2)
## [1] 0.6852124
## [1] 1.011026
Compare with naive model with all interactions between covariates and stratifying binary factors:
df.x <- data.frame(y = y, x = x, grp = grp) df.x.test <- data.frame(x = x.test, grp = grp.test) # create formula for interactions between factors and covariates form <- paste("y ~ (", paste(paste0("x.", 1:ncol(x)), collapse = "+"), ")*(grp.1*grp.2*grp.3)" )
Fit linear model and generate predictions for test set:
lmf <- lm(as.formula(form), data = df.x) preds.lm <- predict(lmf, df.x.test)
Evaluate mean squared error:
mean((y.test - preds.lm) ^ 2)
## [1] 0.8056107
mean((y.test - preds.vl) ^ 2)
## [1] 0.6852124