function to generate coefficient matrix with hierarchical sparsity

genHierSparseBeta(
  ncats,
  nvars,
  hier.sparsity.param = 0.5,
  avg.hier.zeros = NULL,
  effect.size.max = 0.5,
  misspecification.prop = 0
)

Arguments

ncats

number of categories to stratify on

nvars

number of variables

hier.sparsity.param

parameter between 0 and 1 which determines how much hierarchical sparsity there is. To achieve a desired total level of sparsity among the variables with hierarchical sparsity, this parameter can be estimated using the function 'estimate.hier.sparsity.param'

avg.hier.zeros

desired percent of zero variables among the variables with hierarchical zero patterns. If this is specified, it will override the given hier.sparsity.param value and estimate it. This takes a while

effect.size.max

maximum magnitude of the true effect sizes

misspecification.prop

proportion of variables with hierarchical missingness misspecified

Examples

set.seed(123) # estimate hier.sparsity.param for 0.15 total proportion of nonzero variables # among vars with hierarchical zero patterns # NOT RUN: Takes a long time # hsp <- estimate.hier.sparsity.param(ncats = 3, nvars = 25, avg.hier.zeros = 0.15, nsims = 100) # the above results in the following value hsp <- 0.6341772 # check that this does indeed achieve the desired level of sparsity mean(replicate(100, mean(genHierSparseBeta(ncats = 3, nvars = 25, hier.sparsity.param = hsp) != 0) ))
#> [1] 0.14565
sparseBeta <- genHierSparseBeta(ncats = 3, nvars = 25, hier.sparsity.param = hsp)