summary.Rd
summary method for fastglm fitted objects
# S3 method for fastglm summary(object, dispersion = NULL, ...)
object | fastglm fitted object |
---|---|
dispersion | the dispersion parameter for the family used.
Either a single numerical value or |
... | not used |
a summary.fastglm object
x <- matrix(rnorm(10000 * 10), ncol = 10) y <- 1 * (0.25 * x[,1] - 0.25 * x[,3] > rnorm(10000)) fit <- fastglm(x, y, family = binomial()) summary(fit)#> #> Call: #> fastglm.default(x = x, y = y, family = binomial()) #> #> Deviance Residuals: #> Min 1Q Median 3Q Max #> -2.0129 -1.1218 -0.6275 1.1112 2.0918 #> #> Coefficients: #> Estimate Std. Error z value Pr(>|z|) #> X1 0.424298 0.021406 19.821 <2e-16 *** #> X2 -0.029000 0.020471 -1.417 0.157 #> X3 -0.364584 0.021316 -17.103 <2e-16 *** #> X4 0.007105 0.020891 0.340 0.734 #> X5 -0.003902 0.020628 -0.189 0.850 #> X6 0.026920 0.020796 1.295 0.195 #> X7 -0.009822 0.020591 -0.477 0.633 #> X8 0.006501 0.020869 0.311 0.755 #> X9 0.000051 0.020562 0.002 0.998 #> X10 0.022796 0.020788 1.097 0.273 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> (Dispersion parameter for binomial family taken to be 1) #> #> Null deviance: 13863 on 10000 degrees of freedom #> Residual deviance: 13150 on 9990 degrees of freedom #> AIC: 13170 #> #> Number of Fisher Scoring iterations: 4 #>